

SQLian: handles SQL so you don’t need to

SQLian is an all-in-one library that “shephards” you through interaction with
SQL. Unlike an ORM (like the ones come with Django, SQLAlchemy, etc.), it does
not try to hide the fact you’re writing SQL, but on the other hand still:

	Frees you from handling pesky SQL syntax oddities, so you can better debug
your SQL like your Python code.

	Provides a unified interface to connect to different database
implementations.

	Automatic cursor handling anda better way to interact with the data returned
by the SQL database.

The Basics

Connect to a database:

import sqlian
db = sqlian.connect('postgresql://...')

and perform a query:

rows = db.select(
 'name', 'occupation',
 from_='person',
 where={'main_language': 'Python'},
)

Now you can access the data directly:

>>> rows[0]
<Record {"name": "Mosky", "occupation": "Pinkoi"}>

or iterate over them:

for r in rows:
 print('{} works at {}'.format(r.name, r.occupation))

Interested? Read on!

Table of Contents

	Installation Guide

	Quickstart
	Connecting to a database

	Making queries

	Handling results

	Inspirations

	Indices and Tables

Installation Guide

I highly recommend you check out Pipenv by Kenneth Reitz to handle you project
dependencies. With Pipenv, you can insall SQLian simply with:

$ pipenv install sqlian

The “non-modern” way to install SQLian is from the PyPI, through Pip:

$ pip install sqlian

The source code is also available at GitHub. You can download release packages
directly on it, or use Pip and Git to install the in-development snapshot:

$ pip install git+https://github.com/uranusjr/sqlian.git

Or even just clone and install manually yourself:

$ git clone https://github.com/uranusjr/sqlian.git
$ cd sqlian
$ python setup.py install

Quickstart

SQLian is composed of three main parts:

	Connectors connect to a database.

	Queries take native objects and convert them to a SQL command. The
command can then be executed by the connector in the database.

	Records are wrappers providing a clean, nice interface to interact with
the database cursor, and the data it retrieves.

Let’s do a quick walk through on them one by one.

Connecting to a database

SQLian uses the 12factor [https://www.12factor.net/backing-services]-inspired database URL syntax to describe a
database. This syntax is compatible with popular tools, including
DJ-Database-URL [https://github.com/kennethreitz/dj-database-url], SQLAlchemy [https://www.sqlalchemy.org], and everything that builds on top of them.
Which means, like, everything?

As an example, let’s connect to a PostgreSQL database:

import sqlian
db = sqlian.connect('postgresql:://user:pa55@localhost/contactbook')

SQLian has a few connectors built-in. Some of them requires extra dependencies
to actually connect to, like psycopg2 for PostgreSQL. You can also build
your own connectors if SQLian doesn’t have them built-in, but we’ll save that
discussion for later.

The connect() function returns a Connection object, which conforms to the
DB-API 2.0 specification (PEP 249 [https://www.python.org/dev/peps/pep-0249/]), so you can get to work directly if you
know your way around. But there’s a better way to do it.

Making queries

Aside from the DB-API 2.0-compatible stuff, the Connection object also
provides a rich set of “query builders” that frees you from formatting SQL
yourself, and convert native Python objects more easily for SQL usage.

Let’s insert some data first:

db.insert('person', values={
 'name': 'Mosky',
 'occupation': 'Pinkoi',
 'main_language': 'Python',
})

This roughly translates to:

INSERT INTO "person" ("name", "occupation", "main_language")
VALUES ('Mosky', 'Pinkoi', 'Python')

but saves you from dealing with column and value clauses and all those
%(name)s stuff.

You can still use column name and value sequences if you have them already:

db.insert(
 'person',
 columns=('name', 'occupation', 'main_language'),
 values=[
 ('Tim', 'GilaCloud', 'Python'),
 ('Adam', 'Pinkoi', 'JavaScript'),
],
)

Did I mention you can insert multiple rows at one go? Yeah, you can.

It’s easy to update data as well:

db.update('person', where={'name': 'Adam'}, set={'main_language': 'CSS'})

Notice the key order does not matter. Remember that time you forget a WHERE
clause and mistakenly wipe the whole table? Put it first so you don’t miss it
next time.

You’d guess how deletion works by now, so let’s add a little twist:

db.delete('person', where={'occupation !=': 'Pinkoi'})

The query build automatically parse trailing operators and do the right thing.

Handling results

Some queries produce data. For every query, SQLian returns an iterable object
so you can handle those data.

>>> rows = db.select('person')
>>> rows
<RecordCollection (pending)>

Accessing the content in any way automatically resolve it:

>>> rows[0]
<Record {"name": "Mosky", "occupation": "Pinkoi", "main_language": "Python"}>
>>> rows
<RecordCollection (1+ rows, pending)>

>>> for row in rows:
... print(row)
<Record {"name": "Mosky", "occupation": "Pinkoi", "main_language": "Python"}>
<Record {"name": "Adam", "occupation": "Pinkoi", "main_language": "CSS"}>
>>> rows
<RecordCollection (2 rows)>

A record can be accessed like a sequence, mapping, or even object:

>>> row = rows[0]
>>> row[0]
'Mosky'
>>> row['occupation']
Pinkoi
>>> row.main_language
Python

And in fact, it conforms completely to the Sequence and Mapping ABCs [https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes], so you
can freely treat them as such, and easily convert a record to built-in Python
type.

Inspirations

Few ideas in SQLian is original. Special thanks to the following projects and
their contributors:

	MoSQL [http://mosql.mosky.tw] by Mosky Liu

	for the idea of building SQL from Python constructs, and coming up with
how most of the function calls should look like.

	Records [https://github.com/kennethreitz/records] by Kenneth Reitz

	for the record API.

	SQLAlchemy [https://www.sqlalchemy.org] by Michael Bayer

	for the database connector API.

	DJ-Database-URL [https://github.com/kennethreitz/dj-database-url] by Kenneth Reitz

	for the urlparse-based database URL parsing logic.

Indices and Tables

	Index

	Module Index

	Search Page

Index

 nav.xhtml

 Table of Contents

 		SQLian: handles SQL so you don't need to

 		Installation Guide

 		Quickstart

 		Connecting to a database

 		Making queries

 		Handling results

 		Inspirations

 		Indices and Tables

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

